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The current DSN frame synchronization procedure is based on monitoring the

decoded bit stream for the appearance of a sync marker sequence that is transmit-

ted once every data frame. This article explores the possibility of obtaining frame

synchronization by processing the raw received channel symbols rather than the

decoded bits. Performance results are derived for three channel symbol sync meth-

ods, and these are compared with results for decoded bit sync methods reported
elsewhere. It is shown that each class of methods has advantages or disadvantages

under different assumptions on the frame length, the global acquisition strategy,

and the desired measure of acquisition timeliness.

It is shown that the sync statistics based on decoded bits are superior to the

statistics based on channel symbols, if the desired operating region utilizes a prob-

ability of miss many orders of magnitude higher than the probability of false alarm.

This operating point is applicable for very large frame lengths and minimal frame-

to-frame verification strategy. On the other hand, the statistics based on channel

symbols are superior if the desired operating point has a miss probability only a

few orders of magnitude greater than the false alarm probability. This happens for

small frames or when frame-to-frame verifications are required. Among the three

channel symbol methods examined, the squared-distance statistic offers the best

performance in the range of normal signal-to-noise ratios, but it degrades more

rapidly than the correlation statistic or the hard-limited symbol discrepancy count

statistic when the signal-to-noise ratio is extremely low.
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I. Introduction

The current DSN frame synchronization procedure is

based on transmitting from the spacecraft a convobltion-

ally encoded 32-bit sync marker sequence at the beginning

of every data frame consisting of around 104 bits. On the

ground, the decoded bit stream is monitored for a 32-bit

window of agreements with the marker, and a likely sync

location is identified by comparing the number of disagree-

ments with a preselected threshold. In addition, a frame-

to-frame verification strategy is employed to definitively

declare sync acquisition or sync loss.

This article explores the possibility of obtaining frame

synchronization by processing the raw received channel

symbols rather than the decoded bits. Performance re-

suits are derived for three channel symbol sync methods,

and these are compared with results for decoded bit sync

methods reported elsewhere [1, 2]. It is shown that each

class of methods has advantages or disadvantages under

different assumption on the frame length, the global ac-

quisition strategy, and the desired measure of acquisition
timeliness.

II. Various Possible Synchronization
Methods

A. General Framework for a Wide Class of

Synchronization Methods

The DSN's current method of frame synchronization

can be viewed as a prototype of a fairly general type of

synchronization scheme. There are three basic levels to

this scheme. First, a statistic z is measured at all possible

locations of the frame marker, and the observed values

of z are used to identify likely locations of the marker.

Second, values of z obtained at all possible locations within

a frame and for different frames are correlated for one or

more frames to verify and select the most likely marker

location. Third, the statistic z is monitored from frame to

frame at the selected marker location to verify continued

sync.

This three-level synchronization model can be com-

pletely general if the decisions at all three levels can depend

in an arbitrary way on all the observed data. In practice,

it is usually assumed for ease of implementation that the

three levels of decisions are mostly decoupled. This article

considers only the first two levels, with primary emphasis

on the first level.

Ideally, the statistic z should be a sufficient statistic

summarizing all the relevant information in the data. In

practice, z is constrained to be a meaningful, but easy to

compute, measure of the data. There are many possible

choices for the statistic z. This statistic may be based di-

rectly on observation of the received channel symbols, or it

may be calculated from the decoded output of the Viterbi

decoder. This article analyzes several different statistics

based on channel symbol measurements, and briefly dis-

cusses some other statistics based on decoded bits; these

statistics are reported elsewhere [1, 2].

Figure 1 is a general system diagram introducing nota-

tion for describing the two types of synchronization statis-

tics. The stream of incoming "data" bits {bi} includes both

true data bits and sync marker bits {Xi}. The "data" bit

stream is packaged into data frames {bi,i = 1,..., B} of

B bits each, and L sync marker bits {Ai,i = 1,..., L} are

included in every data frame. The "data" bit stream is

convolutionally encoded by a rate 1/N, constraint length

K convolutional encoder. The encoded channel symbol

stream {si, i = 1,..., S} is likewise partitioned into frames

of S = NB symbols each, and each frame includes a set

of M = N(L - K + 1) sync marker symbols {mi, i =

1,..., M} that are totally determined by the sync marker

bits {Xi, i = 1,...,L}. The remaining N(B - L + K - 1)

symbols in each frame are dependent solely on the true

data bits or else on a combination of true data bits and

sync marker bits.

The channel symbols are assumed to have constant

magnitude s (i.e., si = +s), and they are received in ad-

ditive white Gaussian noise {ni,i = 1,...,S} with zero

mean and variance a 2. The ratio p = s2/a 2 is a signal-

to-noise parameter. In terms of p, the channel symbol

signal-to-noise ratio is E,/No = p/2, and the bit-energy-

to-noise ratio is Eb/No = Np/2. The received symbols

{ri, i = 1, ... ,S} are passed through a maximum likeli-

hood convolutional decoder (Viterbi decoder) to obtain the

decoded bits {di, i = 1,...,B}.

The general performance expressions in this article are

derived for arbitrary combinations of the parameters K,

N, L, M, B, and S. However, all explicit performance

curves assume a 32-bit marker sequence and the NASA-

standard constraint length 7, rate 1/2 code (i.e., L = 32,
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M = 52, K = 7, and N = 2). The curves in Section III

are applicable to any frame length, while the curves in

Section IV assume a frame length of 10000 bits or 20000

symbols (i.e., B = 10000, S = 20000).

B. Sync Methods Based on Decoded Bits

Frame sync observables based on decoded bits are a

function of the L-vector of discrepancies {,_i @ di, i =

1,...,L} between the sync marker bits {XI, i = 1,...,L}

and a sliding L-bit window of actual decoded bits {di, i =

1,...,L}. Several reasonable statistics are described in

this section. Further analysis of observables based on de-

coded bits is not carried out in this article, but perfor-

mance curves are cited from [1, 2] for comparison with

channel symbol methods.

1. Decoded Bit Discrepancy Count Statistic.

In this case, the statistic z simply counts the number of

discrepancies between the sync marker bits and the current

L-bit window:

L

i=1

This is the statistic used in the current DSN frame sync

algorithm.

2. Decoded Bit Discrepancy Span Statistic.

Viterbi decoders tend to make bursts of errors and the

decoded bits are essentially random inside an error burst

[3]. Thus, any agreements with the sync marker that oc-

cur inside a decoder error burst are completely accidental

and should not be counted as true agreements. This ob-

servation leads to the definition of the discrepancy span

statistic. The discrepancy span measures the distance in

bits between the first and last disagreements with the sync

marker. The statistic z is defined simply by

x = i2 - iz + 1

where

i1= min {i: (hi@di)= l}
l<i<M

is= max {i: (hi@di)=l}
Z<i<_M

This statistic was first suggested and analyzed in [2].

C. Sync Methods Based on Channel Symbols

Frame sync observables based on channel symbols are

obtained by comparing a sliding M-symbol window of re-

ceived symbols {ri, i = 1,..., M} with the sync marker

symbols {mi,i = 1,...M}. Several reasonable channel

symbol statistics are described in this section.

1. Hard-Limited Channel Symbol Discrepancy

Count. The channel symbol statistic most similar to the

decoded bit statistics is obtained by hard limiting each re-

ceived symbol ri to the nearest transmitted symbol value

+s and counting disagreements with the sync marker se-

quence. A statistic x that simply counts the number of

discrepant symbols is defined by

1 M

x = _ Z [1 - sgn (mi) sgn (ri)]
i=1

This statistic x counts one discrepancy for every disagree-

ment in sign between a received symbol ri and the corre-

sponding sync marker symbol mi.

Because the received symbols {ri} contain white

Gaussian noise and are not prone to error bursts, burst-

inspired statistics such as the discrepancy span statistic

are not useful in the channel symbol domain. However,

statistics that make use of the soft-quantized information

in the channel symbols can offer improvement.

2. Weighted Symbol Discrepancies. An interest-

ing statistic using soft-quantized information is derived as

a weighted sum of symbol discrepancies. The statistic x is

defined by

M

x = Zmax[0,-ri sgn (mi)]
i=1

Just like the hard-limited symbol discrepancy count statis-

tic, this statistic z counts 0 every time the received symbol

ri and the corresponding sync marker symbol ml agree

in sign, no matter how inexact the agreement might be.

However, this statistic does not count all sign discrepan-

cies equally, but instead weights them by the magnitude

of the corresponding received symbols.
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The weighted symbol discrepancy statistic was first

proposed by Massey [4] as a good approximation to the

maximum likelihood detection statistic in the region of

high signal-to-noise ratio. This statistic is not further an-

alyzed in this article, but will be examined in the future

by simulation or central limit theorem approximation.

3. Channel Symbol Correlation Statistic. One

natural soft-quantized statistic measures the correlation

between the received symbols and the sync marker sym-

bols. The statistic z is defined by

M

x ---- Emi(mi -- ri)

i=1

The observed value of this statistic should be near 0 if

{ri, i =. 1,...,M} contains the marker, and otherwise

should be a large positive number around Ms 2. With this

definition, the correlation statistic exhibits the same qual-

itative behavior as the discrepancy-based statistics.

4. Channel Symbol Squared Distance Statis-

tic. Another natural symbol-based statistic measures the

squared distance between the received symbols and the

sync marker symbols. The statistic z is defined by

M

x = E (mi -- ri) 2

i=1

Again, a small value of x indicates agreement with the

marker, while a large value indicates disagreement.

III. Probability of Miss and Probability
of False Alarm

A. Basic Definitions

All of the statistics z defined in the previous section

are scalar; a value of z near 0 indicates a match with the

sync marker, while a large positive value indicates disagree-

ment. Thus, it is natural to use the observed values of z

to make tentative yes-no decisions about the location of

the marker, according to whether x falls below or exceeds

a threshold 0. The tentative decision rule for all statistics

defined above is of the general form

sync
<

z - 0

no sync

If z exceeds 0 when z is measured at the true position

of the marker, the tentative decision rule results in the

true marker location being missed in the current frame.

Conversely, if z falls below 0 when z is not measured at

the true marker position, then the decision rule causes a

false detection of sync or false alarm.

The intrinsic goodness of various statistics x can be

evaluated by comparing the tradeoff between probability

of miss (PM) and probability of false alarm (PF), which

results as the threshold 0 is varied for a given statistic

z. The miss probability and false alarm probability are
defined as

PM -- Prob [z > 01 sync marker located at

current L-bit or M-symbol window]

PF = Prob [z < O1sync marker not located at

current L-bit or M-symbol window]

The miss probability PM is the probability that the

true marker will fail to pass the threshold test at the true

location of the marker. Within any one data frame, there is

only one opportunity for a miss to occur. The false alarm

probability PF is the probability that the threshold test

will be passed at some particular location that contains

only true data bits and symbols or possibly a combination

of true data bits and symbols and marker bits and symbols.

In each frame there are B- 1 opportunities for false alarm

for algorithms based on decoded bits, or S-1 opportunities

for algorithms based on channel symbols.

B. Computation of PM versus PF for
Various Observables

1. Decoded Bit Discrepancy Count Statistic.

The tradeoff between miss probability and false alarm

probability for the decoded bit discrepancy count statis-
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tic has been reported in [1, 2]. A graph showing some of

the results of [2] is presented in Fig. 2.

It must be noted that the miss probability and false

alarm probability defined in [2] are not equal to those used

in this article. In [2], the threshold test had to be passed
at the same location in two consecutive frames for either

a false alarm or detection of true sync to occur. The false

alarm probability (OIM') and miss probability 1-P(OIM)

defined in [2] are related to the corresponding probabil-

ities PF and PM used in this article as P(O[M') = P_,

1 - P(O[M) = 1 - (1 - PM) 2.

2. Decoded Bit Discrepancy Span Statistic.

The miss probability versus false alarm probability curves

for the decoded bit discrepancy span statistic are shown in

Fig. 3. These curves are taken from [2], after adjusting for

the different definitions of miss probability and false alarm

probability described above.

3. Hard-Limited Channel Symbol Discrepancy

Count Statistic. Measured at the marker, the hard-

limited symbol discrepancy count statistic x is a binomial

random variable,

M

M 1 [1 -- sgn (mi) sgn (mi + nl)] - _-':_xi

i=1 i=1

where {xi, i = 1,..., M} are independent binary random
variables,

The probability distribution for the statistic z is given by

Prob [z=j]= (M)qi(1-q) M-j, j=O,...,M

The miss probability is easily evaluated as

¢0-q)
j=e+l

At any given location not overlapping the marker,

the statistic z is conditionally a sum of two binomial ran-

dom variables whose statistics depend on the discrepancies

{_i, i - 1,..., M} between the marker symbols {mi, i =

1,... ,M} and the sliding window of M symbols {si, i =

1,..., M} at the current location

_i= _l[1-sgn(mi) sgn(sl)], i=l,...,M

Then, if w is the Hamming weight of the discrepancy se-

quence {_i, i = 1,...,M},

M

i=1

the statistic x can be written as

with

and

Prob [zi=l]=q=l-Prob [xi=O]

q "-Prob [ni>m]'-_(-_)-'Q(_fp)

'//Q(u)- v_ e-'_/2dt

X M-wE 21 [1--sgn (mi)sgn (mi + hi)]
i=I

l [1--sgn (mi) sgn (--mi + ni)]
i=1

M-w w

- E
i=1 i=1

where {Zl, i = 1,..., M - w} are independent binary ran-

dom variables as defined above and {Yi,i = 1,..., w} are
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also independent binary random variables with a different

probability, ( o ) (o/_'_PM = Q _ = Q _,v/-_,]

Prob [Yi = 1] = p = 1 - Prob [Yi = 0]

p= =
Away from the marker, the correlation statistic x is

a sum of conditionally Gaussian random variables, some

with zero mean and some with nonzero mean:

The probability of false alarm is obtained by averaging the

conditional probability that z will fall below threshold over

the possible discrepancy weights w,

M--W l/)

== _ (-re,n,)+_¢2m,_-re,n,)
i----1 i----1

M

PF = Z Prob[w]
w=O

x Z M-w q/(l_q)M_w_j
j=0 k=0 J

y+k_<8

× (k)Pk(1-p) _-k

The discrepancy weight probability distribution

Prob[w] was obtained by exhaustive enumeration for a 32-

bit sync marker sequence and the NASA-standard con-

straint length 7, rate 1/2 convolutional code. This dis-

tribution is approximately binomial except at the tails

(w near 0 or M). The exact distribution for the NASA-

standard code is reported in Appendix A.

The tradeoff between miss probability and false alarm

probability for the hard-limited channel symbol discrep-

ancy count statistic is plotted in Fig. 4 for signal-to-noise

ratios Eb/No ranging from -1.5 dB to +3.0 dB.

4. Channel Symbol Correlation Statistic. Mea-

sured at the marker, the channel symbol correlation statis-

tic x is a sum of independent Gaussian random variables,

M M

Z(-min,)=Z u,
i=1 i=1

where ui is N(0, s2a2), z/a s is N(0, Ms2/a _) = N(O, Mp).

Thus, the miss probability is calculated simply as

M--II) tv

= Zu,+_v,
i=1 i=1

where vi is N(2s 2, s_a2), z/a s is N(2ws2/a 2, Ms2/a 2) =

N(2wp, Mp).

The false alarm probability is obtained by averaging

the conditional Gaussian probability distribution for z over

the discrepancy weight distribution Prob[w],

M t,2wp:0_/.__
PF = ZPr°b[w] Q \ _ ,]

w----0

Figure 5 shows PM versus PF for the channel symbol cor-
relation statistic.

5. Channel Symbol Squared Distance Statistic.

At the marker, the squared distance statistic x is a sum of

squares of M zero-mean Gaussian random variables, i.e.,

x is a chi-squared random variable with M degrees of free-
dom:

M

Z 2X : B i

i=1

where ni is N(0, a2), z/a s is x2(M). Away from the

marker, the squared-distance statistic is conditionally a

noncentral chi-squared random variable,
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X

M-w to

2 Z(2m i ni)2E ni. -
i=1 i=1

M-I/J 1o

Z +Z 4
i=1 i=1

where zl is N(2mi,_r2), z/a z is noncentral x_(M,4wv).

The probability distribution functions for central and non-

central chi-squared random variables with an even number

of degrees of freedom can be related to the probability dis-

tributions for certain Poisson random variables, as shown

in Appendix B. Assuming that the number of marker sym-

bols M is even, the miss probability and false alarm prob-

ability can thus be expressed as

PM = Prob n_ > 0

=Prob kz _-_--1

PF = _ Prob[w] Prob ] Z n_ + z_ < 0
w=O L i=1 i=1

M

= E Prob[w] Prob
w_0

where kl is Poisson (0/2a2), k2(w) is Poisson (2wp), and

kl, k2(w) are conditionally independent given w. Evaluat-

ing the Poisson probabilities gives

_-z ° "kt ( 0)kl! expPM = Y_
kt=O

Pr = Y_ Prob[w]
k2!

w=0 k2=0
exp(-2wp)

X _2a_---LJ" --2-_kx! exp
kl =k_l+ _'2

The resulting curves of PM versus PF are plotted in Fig. 6.

C. Conclusions from the PM versus PF Curves

Several important conclusions about the relative per-

formance achievable by the various sync statistics can be

drawn by comparing the tradeoff curves in Figs. 2 through

6. A PM versus PF curve which is uniformly below and

to the left of another indicates superiority in the corre-

sponding sync statistic. For example, Figs. 2 and 3 appear

to show that the decoded bit discrepancy span statistic is

uniformly superior to the decoded bit discrepancy count

statistic, although the advantage disappears at small Pr.

Among the channel symbol methods, the squared dis-

tance statistic yields superior performance for large Eb/No,

while the correlation statistic overtakes it for very poor

signal-to-noise ratio (Eb/No < 0.5 dB). The performance

of the hard-linfited symbol discrepancy count statistic re-

sembles the correlation statistic's performance, but is de-

cidedly inferior at very low signal-to-noise ratio (Eb/No <

0 dB). The theoretically near-optimum weighted symbol

discrepancy statistic may be better than all three, but it

was not analyzed here.

Comparing the performances of the decoded bit meth-

ods with those of the channel symbol methods is a more

complicated issue, because the tradeoff curves are dissim-

ilar in shape. The curves for the decoded bit statistics

are much flatter than those for the channel symbol statis-

tics. There is a distinct crossover point between the curve

for one of the decoded bit statistics and the corresponding

curve for one of the channel symbol statistics. To the left

of the crossover point (small PF), the decoded bit statis-

tic is superior, while the channel symbol statistic performs

better on the other side (large PF). The judgment of which

statistic is better depends on the desired operating point

on the PM versus Pr curves. As shown in Section IV, this

desired operating point is a function of the frame length,

the global acquisition strategy, and the preferred measure

of acquisition timeliness.

The flatness of the PM versus PF curves for the de-

coded bit statistics is due to the bursty nature of the

Viterbi decoder errors. A marker-length section of decoded

bits is likely to be either entirely correct or mostly garbage.

Thus, only a small improvement in miss probability can be

obtained by increasing the threshold 0 above 0, while the
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falsealarmprobabilityincreases substantially. The con-

sequence of the flat PM versus PF curves is that the per-

formance of the decoded bit schemes is basically limited

by the Viterbi decoder's error probability for decoding a

32-bit symbol. Arbitrarily small false alarm probability

(down to a minimum of approximately 2 -L, the probabil-

ity that L data bits will accidentally reproduce the sync

marker) can be purchased at little expense in PM. How-

ever, reducing PF too far has no benefit if the frame length

is small. The acquisition failure probability is totally dom-

inated by PM in this case. Even with a large frame, there

are other ways to reduce PF dramatically, such as by re-

quiring frame-to-frame verification before declaring sync.

Such a technique has virtually no benefit if PF can already
be made small without it.

While the decoded bit curves are very flat, the channel

symbol curves show a lot of elasticity. Appreciable changes

in PF result in appreciable changes in PM, and vice-versa.

These methods show stronger response to frame-to-frame

verification strategies. Of course, the increased elasticity

also means that all parameters must be more delicately

adjusted for optimum behavior.

IV. Probability of Acquisition of True
Sync

A. Assumptions About the Acquisition

Strategy

The miss probability versus false alarm probability

curves reflect the power of a given statistic x to discrim-

inate in a pairwise manner between the true sync marker

location and any one of the possible false locations. To

compute the probability that sync will be acquired cor-

rectly, it is also necessary to consider the global strategy

that combines all of the bit-by-bit or symbol-by-symbol

tentative decisions based on x to arrive at a declared sync

position.

The global strategy can be divided into two parts.

First, how are the outcomes of all the tentative decisions

within one frame period combined to select or rank the can-

didate marker locations based on a single frame of obser-

vations? Second, are observations from succeeding frames

required to reevaluate the candidates from the first frame

before declaring sync, and, if so, how are they applied?

These two parts may be called the intraframe strategy and

the frame-to-frame strategy, respectively.

In this article, it is assumed that no sync candidates

emerge from any frame in which the threshold test is failed

at all locations; when this happens, the sync search is

restarted from scratch in the next frame. If the thresh-

old test is passed at one or more locations within a frame,

it is assumed that the first such location tested is the

unique sync candidate based on that frame's observations.

The current DSN sync algorithm can switch between this

scheme and another slightly more accurate one that se-

lects the most probable location (i.e., the one that passes

the threshold test by the widest margin). The latter in-

traframe strategy is not considered in this article.

Two different frame-to-frame strategies are con-

sidered. The simplest frame-to-frame strategy requires no

correlation with succeeding frames. Sync is declared or

not declared solely on the basis of the intraframe results

in a single frame. A second frame-to-frame strategy is one

currently used by the DSN, which requires next-frame ver-

ification before declaration of sync. In this strategy, the

unique sync candidate (if any) from any single frame is

chosen as the sync location if and only if it is verified once

in the next succeeding frame by repassing the threshold

test at the corresponding location within that frame.

Each acquisition strategy and sync statistic must be

evaluated relative to an appropriate measure of perfor-

mance. The appropriate performance measure is not neces-

sarily the same for different strategies. For example, mini-

mum acquisition times under an elaborate frame-to-frame

verification strategy are guaranteed to be longer than un-

der a single-frame strategy. In this article, the probability

of acquisition of true sync in one frame is used to compare

the performance of different basic observables z under the

single-frame acquisition strategy. On the other hand, the

desired measure of performance for the strategy requiring

next-frame verification is the probability of acquisition of

true sync within four frames or less.

B. Probability of Acquisition of True Sync in
One Frame

For true sync to be declared after one frame length of

observations, the true sync location must pass the thresh-

old test, and no false sync location may pass the threshold

test earlier. The probability that the true sync location

passes the threshold test is 1 - PM. The probability that

any particular false sync location passes the threshold test

is PF. As stated earlier, it is assumed that the same false
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alarm probability PF applies both to data-only locations

and to locations partially overlapping the marker.

The probability that at least one false sync will be de-

tected before the true sync location is tested can he upper

bounded and approximated by multiplying the false alarm

probability PF by the total number of false sync locations

tested prior to the true sync location. This number is a

random variable that depends on the exact time the syn-

chronization search was started relative to the true frame

boundaries. If the synchronization search is started at a

random time, the average number of false sync locations

tested before the true sync location is (B - 1)/2 for algo-

rithms based on decoded bits or (S- 1)/2 for algorithms

based on channel symbols.

In summary, true sync can fail to be acquired in one

frame if either the true sync location fails the threshold

test, or if a false alarm occurs at any of the false sync loca-

tions tested earlier. These two events occur with probabil-

ities PM and [(B - 1)/2]PF or [(S- 1)/2]PF, respectively.

Thus, the probability of acquisition of true sync within one

frame is approximated for small PM and PF by

Prob[acquisition of true sync within one frame]

_I--PM B-
_IpF,

on decoded bits

S-1

1-- PM -- "--_-- PF ,

on channel symbols

for algorithms based

for algorithms based

This probability is plotted in Fig. 7 for the five sync ob-

servables considered in Figs. 2 through 6, assuming a frame

length of 10000 bits or 20000 symbols and an optimized

threshold at each signal-to-noise ratio.

C. Probability of Acquisition of True Sync

Within Four Frames, With Required

Next-Frame Verification

In this section, it is assumed that the frame-to-frame

strategy requires that the threshold test be passed at the

same location in two consecutive frames before sync is de-

clared. For true sync to be declared within four frames,

the true sync location must pass the threshold test either

in the first and second frames, or in the second and third

frames after failing to pass in the first frame, or in the third

and fourth frames after failing the test in the second frame.

These three events happen with probabilities (1 - PM) 2,

PM(1 -- PM) 2, and PM(1 -- PM) 2, respectively, assuming

that observations are independent from frame to frame. In

addition, it is necessary that no false sync location be de-

tected and verified before true sync can be declared. Any

particular false sync location is detected and verified on

the second frame, third frame, or fourth frame with prob-

abilities P_, P_(1 - PF), or P_(1 - PF), respectively. The

corresponding probabilities that at least one false sync is

detected and verified on the second frame, third frame,

or fourth frame can be upper bounded and approximated

by multiplying the former probabilities by the number of

possible false sync locations.

To calculate the probability that a false sync declara-

tion might preempt the possibility of declaring true sync,

it is necessary to divide the possible false sync locations

into two categories. Some false sync locations are first

subjected to the threshold test prior to the true sync loca-

tion, and some are first tested after the true sync location.

The first category of false sync locations can preempt a

true declaration of sync if both the false declaration and

the true declaration occur in the same number of frames,

while the second category causes trouble only if false sync

is declared in fewer frames than true sync. If the frame

sync process is started at a random point in the frame, the

average number of false sync locations in each category is

(B - 1)/2 or (S- 1)/2.

The dominant contribution to the probability that a

false sync will be declared before true sync comes from

the probability that false locations in the first category are

detected and verified at the first opportunity, i.e., within

two frames. This probability is upper bounded and ap-

proximated by [(B - 1)/2]P_ or [(S- 1)/2]Pr_. All other

contributions to the probability of preemptive declaration

of false sync involve terms of order PMP_ and higher-order

terms, and these terms are unimportant if both PM and

PF are small.

The previous observations can be summarized as fol-

lows. True sync can fail to be acquired within four frames

if the true sync location is not detected and verified within

four frames or if a false sync location is detected and

verified earlier. The first event happens with probabil-

ity 1 - (1 - PM)2(1 + 2PM) ,_ 3P_, and the second event
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happenswith approximate probability[(B- I)/2]P_ or

[(S- I)/2]P_. Thus, the probabilityof true acquisition

within four frames isapproximated for small PM and PF

by

Prob [acquisitionof true sync within four frames

with one required verification]

_ 1-3P_ B-1
- --"_Pi_, for algorithms based

on decoded bits

_-, 1 -3P_t - --_Pi_, for algorithms based

on channel symbols

This probability is plotted in Fig. 8 for the same parame-

ters considered in Fig. 7.

V. Summary

This article has analyzed three different sync statis-

tics based on measuring channel symbols. The perfor-

mance of these three statistics was analyzed without sta-

tistical approximation for the basic tradeoff curves of miss

probability and false-alarm probability. These basic per-

formance curves were then extended to yield expressions

for the probability of timely acquisition under two different

acquisition strategies.

It w_ shown that the statistics based on decoded

bits are superior to the statistics based on channel sym-

bols if the desired operating region utilizes a miss prob-

ability many orders of magnitude higher than the false-

alarm probability. This operating point is applicable for

very large frame lengths and minimal frame-to-frame ver-

ification strategy. On the other hand, the statistics based

on channel symbols are superior if the desired operating

point has a miss probability only a few orders of magnitude

greater than the false-alarm probability. This happens for
small frames or when frame-to-frame verifications are re-

quired. Among the three channel symbol methods exam-

ined, the squared-distance statistic offers the best perfor-

mance in the range of normal signal-to-noise ratios, but it

degrades more rapidly than the correlation statistic or the

hard-limited symbol discrepancy count statistic when the

signal-to-noise ratio is extremely low.
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CHANNEL

SYNC MARKER BITS {_'i, i = 1..... L} ARE TRANSMITFED ONCE EVERY DATA FRAME {b i , i = 1..... B}
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Fig. 1. System diagram for two sync methods.
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Appendix A

52-Symbol Weight Distribution for the
NASA-Standard (7,1/2) Code

Evaluation of the false-alarm probabilities for the

three channel symbol statistics analyzed in Section III re-

quires knowledge of the probability distribution of the

Hamming weights of the possible discrepancy sequences

{_i, i = 1,..., M} between the sync marker symbols {mi,

i = 1,...,M} and the sliding window of M symbols

{si, i = 1,...,M} at the current location. The exact

weight distribution for a 32-bit sync marker and the

NASA-standard (7,1/2) code was generated by exhaustive

enumeration. Since the convolutional code is linear, this

weight profile is equivalent to the weight profile generated

by encoding all possible 32-bit patterns. The 2a2 possi-

ble bit patterns were encoded one by one, and a complete

histogram of their encoded weights was produced. This

process required about 14 days of CPU time on a Sun 3

computer.

It is shown in [5] and [6] that the weight distribution

of a binary primitive block code is approximately bino-

mial. Since the convolutional code is linear, and the 52-bit

patterns represent truncated sequences from the output of

the convolutional encoder, these 52-bit patterns can be re-

garded as the codewords of a (52,32) binary block code.

Let At0 denote the number of patterns of weight w. Then

according to [5] and [6] A_ can be approximated by the

following binomial coefficient:

A_,2-2°(?)=A_, 0_<w<52

A comparison between the exact weight distribution

A_ and the approximate distribution A_ is given in Ta-

ble A-1. It is observed that A_ is a good approximation

to Aw except at the two extremes (w near 0 or 52).
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Table A-1. Encoded weight profile for all possible 32-bit input

sequences, encoded by the NASA-standard (7,1/2) code

Histogram totals

Weight, Ratio,

w Actual, Binomial, Aw/A_
Au, A_

0 1 0 1048576.000

1 0 0 0.000

2 2 0 1581.563

3 7 0 332.128

4 18 0 69.718

5 40 2 16.138

6 122 19 6.284

7 333 128 2.610

8 963 718 1.342

9 3634 3509 1.036

10 14244 15087 0.944

11 54082 57605 0.939

12 191047 196819 0.971
13 600241 605596 0.991

14 1692962 1687018 1.004

15 4310848 4273778 1.009

16 9926772 9883112 1.004

17 20917283 20928944 0.999

18 40618430 40695169 0.998

19 72723310 72822934 0.999

20 120117817 120157841 1.000
21 183174400 183097662 1.000

22 258139236 258001251 1.001

23 336646298 336523371 1.000

24 406667062 406632406 1.000

25 455311348 455428295 1.000

26 472746296 472944768 1.000
27 455311348 455428295 1.000

28 406667062 406632406 1.000
29 336646298 336523371 1.000

30 258139236 258001251 1.001
31 183174400 183097662 1.000

32 120117817 120157841 1.000

33 72723310 72822934 0.999

34 40618430 40695169 0.998
35 20917283 20928944 0.999

36 9926772 9883112 1.004

37 4310848 4273778 1.009

38 1692962 1687018 1.004

39 600241 605596 0.991

40 191047 196819 0.971

41 54082 57605 0.939

42 14244 15087 0.944

43 3634 3509 1.036

44 963 718 1.342

45 333 128 2.610

46 122 19 6.284

47 40 2 16.138

48 18 0 69.718

49 7 0 332.128

50 2 0 1581.563

51 0 0 0.000

52 1 0 1048576.000

Total 232 232
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Appendix B

Relationship of Noncentral Chi-Squared Probability
Distributions and Poisson Probability Distributions

Let _ be a noncentral chi-squared random variable

with M degrees of freedom and noncentrality parameter

p. Then, from [7], the probability distribution function of

can be expanded in the form

Prob[_ > O] _ e -"12 (#/2)k Prob[(k > O]= _.
k=O

where {_k,k = 1,2,...} are central chi-squared random

variables with increasing numbers of degrees of freedom,

_kisx2(M+2k), k=1,2,...

Prob[_k > 0] =

(Ml2)+k- 1

j=O

These two results combine to yield

cx_ (M/2)+k-I

e_0/2 (0/2)iProb[_ > 0] = E e-U/2 (/_/2)k
k! E j!

k=0 j=0

= Prob
j - k < M 1]- 2

Also from [7], the probability distributions for each of the

central chi-squared random variables can be related to the

Poisson distribution if M is even, according to

where j and k are independent Poisson random variables

with means 0/2 and/J/2, respectively.
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